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The axially symmetric,, ,~ubsonic emission of a jet of compressible fluid from a conical nozzle is considered. Subject to the 
assumptions that a solution of the corresponding boundary-value problem exists and that a certain asymptotic expansion holds 
in the case of this solution, it is proved that, in an axially symmetric jet of a compressible fluid at a critical pressure on the free 
surface, the gas velocity reaches the sound velocity in a certain plane which is perpendicular to the axis and located at a finite 
distance from the nozzle, edge. Results are presented for a jet  of a perfect gas with an adiabatic exponent 7 = 1.4. Approximate 
formulae are given which enable one to determine the form of a jet with a sonic velocity on the free surface. © 2000 Elsevier 
Science Ltd. All rights r ,~rved.  

The problem of the emission of an axially symmetric jet of an incompressible fluid from a funnel-shaped 
nozzle has been cortsidered by a number of authors. However, the results obtained (see, [1-3]) were not 
of a high accuracy..An effective method for solving the problem of the emission of an axially symmetric 
jet of a compressib]le fluid (a gas), based on the use of the variables of a velocity hodograph, has been 
proposed in [4]. However, in [4] and in later papers, there are no results of calculations for the subsonic 
emission of gas and :ao method is given for the calculation of a jet with a sonic velocity on the free boundary. 

A development of the method in [4], which also enables one, in particular, to use it in the case of a 
sonic velocity on the free boundary, is given below. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider an axially symmetric, subsonic emission of a jet of an ideal, compressible fluid from a semi- 
infinite conical nozzle. We shall assume that there are no external forces and that the jet is a steady, 
barotropic, irrotational flow. In the half-plane of the cylindrical coordinates x and r, the flow domain 
is bounded by the x axis, the generatrix of the cone al b, which makes an angle 00 with the x axis, and 
the free surface bc. The r axis passes through the edge of the nozzle b (Fig. la). 

Suppose Vand p are the velocity and the density of the fluid, 0 is the angle of inclination of the velocity 
vector to the x axis, M is the Mach number, Vc, Pc, Mc are the values of V, p and M at the free surface 
(Mc ~< 1), x = V/P'~, v = P/Pc, Y = vxr2/2 and W is the stream function, introduced using the relations 

x cos 0 = (rv)-X~u,, x sin 0 = - ( rv ) - l~ /x ,  

(subscripts are used to denote partial derivatives). 
The rectangle x, 0 corresponds to the flow domain ina the plane of the variables x and 0 (Fig. lb; 

the segment E = {(% 0) 10 < x < I, - 00 < 0 < 0} corresponds to an infinitely distant stagnation point 
of the flow and the points B and C correspond to the points b and c). 

It is known [4--6] that the functions W(x, 0), r(x, 0), x(x, 0) satisfy the relations 

R= R(¥, Y) = s i n O S 2 L  - PoS + PSo = 0 

L = L ( ¥ )  = (I - M2)¥oo + ' r 2 ¥ =  + (1 + M 2 ) W ,  (1.1) 

p = P(~) = sin 2 0(x2~ + (1 - M2)¥~) 
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Fig. 1. 
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(1.2) 

Without loss in generality, it may be assumed that 

¥ = 0 o n A C ,  v /=  1 o n A I B C  and u /=  (1 - c o s  0)/(1 - cos  00) onAA1 

(the last of conditions (1.3) holds for the whole of the radial flow domain towards the sink). 
Using relations (1.2), we express Yin terms of ~: 

(1.3) 

0 
Y = Y ( ¥ )  = ¥ cosO + ~(~tg, + ¥ ) s i n  OdO (1.4) 

o 

Substituting expressions (1.4) into Eqs (1.1) (S(u/, Y(~t)) = S(~), R(~, Y(~)) = R(¥)), we obtain an 
integro-differential equation in ¥. Relations (1.1), (1.3) and (1.4) define a boundary-value problem for 

in he domain ~. The solution of this problem will be sought in the form ~ = ~0 + Z, where ~/0 is he 
leading part of the asymptotic expansion of the stream function in the neighbourhood of the singular 
point C and % is a smoother function which is found by the method of finite differences. 

2. ASYMPTOTIC EXPANSION OF ~F WHEN Mc < 1 

We shall assume that M and v are known functions of x, which are analytic in the neighbourhood of 
the point ~ = 1. In this case, the coefficients, which depend on x, in expressions (1.1) and (1.2) can be 
expanded in power series in ~ = x - 1 

X 2 = 1 + 2 ; + ;  2, i - M 2 =  ~, uk; k, X(I+M2) = ~-qk;* 
k=0 k=0 

I d~M2 I = , k=l ,2  .... (u I < 0 )  u o = I - M ~ ,  u k k! (ix k ~=l 

qo=2-Uo,  q l=qo-u i ,  q i = - u k - l - u t ,  k=2,3 .... 

V -I  = 1 q- ;Mr? - / ; 2 ( / A O M 2  + U l ) + . . .  
g 

(2.1) 

Putting Me < 1, we introduce the variables a and to 

= (1 - Md ) (2.2) cr=(02+ct2;2) )~, to=arctg-~0, o t=u~ .,2,½ 
cu, 

(t~ and ¢o are the distance to the origin of the coordinate system and the central angle in the plane of 
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the variables a~, and 0; to = -z~ onAC and to = -n/2 on CB). According to (2.2) 

!~ = ot-'Ocosto, 0 = osinto (2.3) 

o o =sinto, o~ =ctcosto, too =°-~c°s~°,  cox = - ~ t o  -~sinto (2.4) 

System (1.1), (1.4) can be written in the form 

L ( V )  = N ( V ) ,  N ( V )  = (SPa - PSe)(S 2 sin 0)  -I (2 .5)  

Suppose Q(W) = L(~)  - N(W) and ~0 is a function which satisfies the equation Q(~)  --> 0 when 
(x, 0) B ~,  (% 0) --> (1,0) as well as the conditions ~o = 0 on AC and ~0 = 1 on CB. We shall seek ~o 
in the form of an asymptotic expansion in the small parameter o, putting 

W0 = ~ + ¥2 + .... ¥ ,  = h,(o)A(o~) 

ht,+l(o)lhk(o)-->O np .  o - * 0 ,  k = l , 2  .... 

and requiring that the following conditions be satisfied 

(2.6) 

~ = 0 n p n t o = - g ,  k =  1,2 .... 

V~ = 1 npn to = -~/2, ~k = 0 npH ~ = -lt/'2, k = 2,3 .... 
(2.7) 

Suppose ~ is the solution of boundary-value problem (1.1), (1.3), (1.4). The asymptotic expansion 
o f ~  in the small parameter o is obviously identical to expansion (2.6) as long as the functions are uniquely 
defined. 

It is natural to seek the leading term in expansion (2.6) in the form ~1 = fl(to). Using relations (2.1), 
(2.3) and (2.4), it can be shown that, here, 

L(°h)=/-q+M-q'  P(¥J)=PI+API , S (¥ j )=S I+ASI ,  R(V~)=Ri+6RJ (2.8) 

L~ = a2Vj0o + V~¢ = ot2o-2ff, AL~ = O(o -~) 

e~ = 0 2 ( V ~  + ot%~0) = 0~ ~ sin 2 toA '2, a ~  = O ( o )  

Si =2Vi  +0~te  =2f l  +sine0costofl" AS I = O ( o )  

Pzo = (x2o-I sin 2to(cos tofa '2 + sin f ~ " )  

Sio =: O -I [cos to(l + 2 cos  2 (o)fj'+ sin r.o cos  2 ¢of~"] 

R~ =eS?L~ -~os~  + ~ s , 0  = o ( o - ' ) ,  zsa~ = O ( l )  

Equating R1, that is, the leading term in the expansion of R(~I)  in powers of o, to zero, we obtain 
the equation 

4A2~ "-- 4 cos 2 tofjfl '2 + sin o)cos o)fl "3 = 0 

Taking account of (2.7), we require that the following conditions should be satisfied 

(2.9) 

f~ ( -~)  = 0, f~ (-n.2) = 1 (2.10) 

A numerical-analytic investigation shows that boundary-value problem (2.9), (2.10) has a unique 
solution: a monotc,nically increasing functionfl(to) can be obtained by numerical integration of Eq (2.9), 
following for the fact that the expansions hold for the ends of the interval [-re, -rd2]. 

fz(_~z+u)=q-2(ue_lu4+ 23 U6 113 uS+.. .) ,  q=0 ,83166  
3 180 2520 

f l ( - ~ - u )  =1 -qu-~4q3u3 +(~2  q2 -~4q4)  u4 +(l -~q 3- 27 s ~ s  
-~6 q j u + . . . 
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Note that the relation f1(0)) has been previously given in [4] in parametric form, which is inconvenient 
for practical applications without any indication of the method used to determine it 

f l = t 2 1 t g ,  ~=-I t+arc tg[d; (2 t ) l Jo(2 t ) ] ,  t ~ [ 0 , t  o] 

where J1, J0 are Bessel functions and to is the least root of the equation J0(2t) = 0, to = q-k 
The second term of expansion (2.6) can be found in the form t~2 = o f  2 (co). The differential equation 

forf2(¢0) is obtained by equating to zero the term of the order of unity in the expansion of the expression 
R(~I + ~2) with respect to o. However, the function ~1 = fl(o~), which is the leading term in the 
expansion of the required function ~ with respect to ~ is sufficient for practical purposes. Note that 
Q(u/) = O(o "n-l) when R(¥)  = O(o a) and, consequently, Q(¥1) = O(~-1) • 

3. A S Y M P T O T I C  E X P A N S I O N  OF tF W H E N  M c = 1 

When M~ = 1, the coefficient u0 in (2.1) vanishes, which leads to a change in the type of singularity 
at the point C. Putting M~ = 1, we introduce the variables x and 13: 

gO (3.1) 
x = [(!.1.0) 2 + I ~ 13 ]~, 13 = arctg I ~ I ~ '  

(× and 13 are the distance from the origin of  the coordinate system and the central angle in the lane 
of  the transformed variables of the hodograph ~1 = I~13/=, 01 = rt0; D -- 0 o n A C  and 13 = - ~ 2  on CB). 
By (3.1) 

~ = -×?6(eos13)~ ' 0 = la-t×sin13 (3.2) 

Xe = lasin13, x~ =-3x~(cos13)  ~ 
2 

13o =lJ.x-'cos13, 13~ =-3x-~sin13(cos13)~ 
2 

We shall seek the function ~0 in the form 

• 0 : ¥1 + ~/2 + .... ¥ ,  : dk (×)gk (13) 
(3.3) 

dk+l(×)/dk(×) --> 0 when × ---> O, k = 1,2 .... 

while requiring that the following conditions are satisfied 

Yk = 0 when ]3 = 0, k = 1 , 2  . . . .  

Yt = 1 when 13 =-n /2 ,  y k =  0 when 13 =-n /2 ,  k = 2,3,.. 
(3.4) 

We shall seek the leading term in expansion (3.3) in the form ~1 = g1(13). Using relations (2.1) and 
(3.2), it can be shown that, in representations (2.8). 

9_,/3 cos ~ -]- /-I =ul~¥jO0+~l~-- 4 ( P )  ( 3tgPg~+gl ' t ,  

= 0 2 (v~, + ~,~e) = ¼ r t-2x~ s in2 p(cos p)~gl '~, 

Si = 2 ¥ ,  +O¥1 e =2g, +sinllcos13gf, ,~, =O(x H) 

Pie = 9 _ j × - ~  sin 213(cos ~)H(cos13g~ 2 + sin g~gt') 

Sle = g -x-j [cos  13(1 + 2 cos  2 ~)gf  + sin 13 cos  213g~'J 

& = os~  - ~osi + ~s,e = o(x-~), ~ : o(x~) 

At., = O(x -36) 

z~l = O(x ~ )  
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Equating R~, the leading term in the expansion of R(¥~) in powers of x, to zero, we obtain 
equation 

,, ¢" 1 

Taking account of conditions (3.4), we require that the following conditions be satisfied 

gw(0) = 0, g,(-rff2) = 1 (3.6) 

Investigation shows that boundary-value problem (3.5), (3.6) has a unique solution: a monotonically 
decreasing function g~(13) can be obtained by numerical integration of Eq. (3.5), taking account of the 
fact that the expansions 

g,(~)=a(~ 2+1_~(,+1~01~ s 1 1~,o+ (3.7) 18225 "" ")' a = 0.31247 

1 2 1 1 4 p ~ ) ~  + 
+  21s " ' "  

9 

p = 1.14967 

hold at the ends of the interval [-~/2, 0]. 
We shall seek the function ¥2 in expression (3.3) in the form ¥2 = u~3~g2([~). Here, according to relations 

(2.1) and (3.2) 

L(¥, + ¥2) = L2 +M.~, P(¥, +¥~)  = P~ + Z~P2 
5(¥~+¥2)=~+~$2, R(¥~ +¥2)  = R2 +aR2 

/-,2 = u2~2¥,0o + 2~¥m + 2 ¥ ~  + u~;¥2o0 + ¥2~, = 

--- x-. ~ {(cos13)~J[(28 sin ~ cos2 I~- 9 sin 13 + 9 sin3 i])g~ - 

# 9  ~ 2  -(Scos 3 6+ 29--sin 2 ~cosl3)g,l+~'(cos~) "('~g2-/'gl3g2 + g2'l}' AL2=O(I) 

P2 = 0:~[2~¥ 2, + u2~2¥~e + 2(¥t,¥2'  + u'~¥1o¥2o)1 = 

= 1~-2~,~ 9(cos~)~ sin 2 ~g~g~ ' [ z  - (c°sl])~(6sin2 lie°s2 + 9 sin' 13)] 

~/'2 = O(x2) 

=x~I/2+3sin2~)g2+sin~cOS~g~], A32-'-O(x ~)  32 =2¥2 +0¥2e 

P2e = I~t-lx)~[-(c°s ~) '~(28sin I~- 48sin 3 ~ + 1 8sin 3 ~)g~ 2 -- 

-(cos ~)~ (28 sin2 ~ cos 2 I] + 9 sin4 ~)g~g~+ 

6 s i .  + s n' + 

S2e= laX'~J~[(8sin ~ - 8 s i n  313)g2 +(3cosl~ - 2sin2 I~ cosl~)g~ + sinl~cos 2 I]g~'] 

4 lu l l  
Equating the leading term in the expansion of R2 in powers of ~, R(¥~ = ~2) to zero, we obtain the 

equation for g2(ff): 
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- J 7 /  2 - 

0.5 

t7 

Fig. 2. 

Eg~ + Fg~ + Gg 2 = H, + 5H 2 

E=g  

I t , ,g2_(2_2s in2~)g lg  ~ sin~cosl3(3_lsin2l~)g~ 2 F = - - ~  gp t + 

8 sin 3 ~ gtg~ -cos2 ~l(1-6sin 2 fj)g~2 + ( 2 + 3sin 2 [i~tg~" G g2 
j 9 cos 13 

-I 3 H I = -(cos 13) ~ [sin 1~(2 - 4 cos 2 ~l)g~g~ + 2 sin21~ cos fl(g Ig~2 _ g~g~,)] 

_q 8 2 2 , 4 3 ,2  H2 =- (cos~)~ [~s in l3cos  [~glgl+~ cOs ~(glg,--g?g~')--9 sin"cos4~g~3] 

We shall represent g2(I]) in the form g2(~) = ~1(I ]) + ~5q02(~) by submitting the functions tO k to the 
conditions 

EtO'k" + FqVk +Gtpt = H k, tp t (0)=~0k(-~/2)=0,  k = l , 2  (3.8) 

Analysis shows that boundary-value problems (3.8) are uniquely solvable and that the functions (Pl(~), 
q02(13 ) are non-negative and can be found by numerical integration of Eq. (3.8) when account is taken 
of the fact that the expansions 

tpt([3) = a(3~3 _~4 +~51~6 +. . . )  

(3.9) 
4/_ 1 22 

tp2(13 ) =a(8~12 -'~pl6 ~4 - . . i . . . i~ p 2 0 8  n6 @...) 

g~2-~-+ t  = t g 27 e - + ~ - ~ p  t +.. .  

hold at the ends of the interval [-rd2,0]. 
The relations g1(13), q01(13), q)2(~) are  shown by curves 1-3 respectively in Fig. 2. 
It can be shown that, for ~t I and ~2, found when Mc --- 1, Q(~I) = O(i2/3) • Q(¥1 + ~2) = Q(1). It 

is obvious that the functions ¥1 --- gl([ 3) and ~2 = ~/3(~01(~) + 8~02(fl)) serve as the initial terms of the 
expansion of the required function ~ with respect to the small parameter ×. 



The emission of  a gas jet from a conical nozzle 103 

4. A N A L Y S I S  OF T H E  F U N C T I O N  ~F 
W H E N  Mc = 1, [3 --~ O, - x / 2  

By relations (3.7) and (3.9), we have 

~O(132) when 13 ~ 0 
g:t(13)+ x~J(~Pt(13) + 8q°2([$)) = ~1 +O(t ~)  when I~ = - r t / 2 + t ,  t- o 

(4.1) 

We shall show l~hat, when Mc = 1, similar relations also hold for the required stream function 
= ~,(×, 13). 
According to the first conditions (1.3), ~(×,  0) = 0. When [3 ~ 0, w~ can represent ¥ (x ,  I~) in the 

form 

~/(×,13) = N(x)b~ (13) + O(b2 (13)) (4.2) 

assuming that bl,(13) is of the order of magnitude of ~ or 13' or and that 13n_+~ is of the order of magnitude 
of 13,, or 13~_E, when rn and n are positive constants, m > n and e is a positive quantity which may be 
as small as desired (according to (4.1), n ~< 2). It can be shown that flbl/b 1 = O(13 t) when bl = O(1$ t) 
and, in the remaining cases, ~Jb'l/b 1 --- O(1) and that ~ /b '~  = O(1) always. 

We shall use the notation O(51(13), 82([3)) bearing O(50(13)) in mind here, where 50(13) is that one of 
the functions 51(13), 62(13) which tends more slowly to zero when 13 ---) 0. Using relations (3.2), we obtain 
from (4.2) that 

~ ,  = O(b~), ¥ ~  = O(b~) 

~ o = 11Nx-~ b{ + O(13b~ , b2 ), ¥o0 = l.t 2 Nx-2 b~" + O( b~ , b~ ") 

L = 112 (1 - M 2)Nx-2b:'+ O(b,, b~') 

P = (I - M 2)N2132b{ 2 + 0(132b~, 132b:b~) 

• ~; = N(2b I + 13b~) + O(~2bl, b 2) 

J~ = 211(1 - M 2)N2x -1 (13b~ '2 + 132b{b D + O(13b21,13b{b~) 

so = la,vx (3b  + + 0(13b  , ) 

R=&+A& 
R, = B(l -'M 2 )N3x -' (4Bb~b F- 413btb~ 2 + 132b:3), ARt = 0(13b~, b~b~ ) 

The quantity ,5RI, when 13 ---) 0, is of a higher order of smallness than each of the terms 
appearing in RI. It therefore follows from the equality R(W(x, 13)) = 0 that RI = 0. The general solution 
of the differentia]L equation for b~, which is obtained by equating RI to zero, has the form 

= c, (6 + 

where cl, c2 are arbitrary constants. When account is taken of the condition bl(0) = 0, it follows from 
this that bl -- O(132). 

When ~ = -~/2 + t, t ---) 0, we can represent ~/(×, 13) in the form 

¥(x,[3) = 1 + K(x)Bl(t)+ 0(82(0)  (52(t)lSt(t) ~ O) 

According to relations (4.3) and (3.2) 

3 

(4.3) 

(4.4) 

By expressions (1.4) and (4.4) 
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r 2 I +~ ¥~ BC = sin OdO 
o BC 

¥,lec = l i m [ - 3  K(I pO I)I I.tO I -~  t~,5; + O(t~a,.t)~5~)} 
,-,o I, 2 

In a solution of the problem exists, then r l~ c is a finite function of 0, which is not identically equal 
to unity when 00 ~ 0. This is only possible when 5~ = 0(t2/3). 

5. ANALYSIS  OF THE F O R M  OF T H E  J E T  W H E N  M c = 1 

Using relations (1.2) and the properties of the solution of the problem which have been established, 
we shall now show that, when Mc = 1, the velocity in the jet is evened out at a finite distance from the 
edge of the nozzle and that the surface, in which this evening-out occurs, is a surface perpendicular to 
the x axis. In estimating any function fl(×, 13), we shall use the notation g2 = O(x k, 13 m, t n) which means 
that 

[ O(x k) when x--~0,  ~ e [ - n / 2 , 0 ]  

f~ = ~O(I 3m) when I~ ~ 0, ×~<x , =  (1 + p20~)~ 
/ 
[O(t ~) when [ ~ = - n / 2 + t , t - * O ,  x~<×= 

It was established above that, when Me = 1 

¥ = ~ ( x , ~ ) = ¥ 1 + A  ' ¥1=gt(l~), A = O ( x ~ , ~ , t  ~)  (5.1) 

It follows from this that 

Vx = ~l/z~ + B ,  Wt~ =~x-~sinl3(c°sl3))~g~ , B=O(x° 'P2 ' t° )  

• e = ~J0 +O(x-~,13,t~) , ¥1o = P  x-~ cosl3g~ 

(l - M2)~o 2 = 9 x-'/.'(cosl~)~ g~2 + O(×-~,132,t 2) 

2 2 9×-gsin2l~(cosl3)2Ag~2 +O(×-~,l~4,to) 

P ctg 0 = 9 P-tx-'S sin I](eos 13) ~ g~2 + O(x~j, 133, t o) 

(5.2) 

In integrals of  the type (1.4) 

g=const,  d 0 = p  -I I~1 ~ ~/cos2[i 

Hence 

e 3 ' 4 P " s i n 2 ~ d ~ -  j" ¥ , # a o  g, - o(,, 'A,I}4,t °)  
o 2 0 

e 2 13 sinl3 AR O(x2,134,t ° )  
! ~,0d0---P-2x2cos I~! g, co--~3fl-, -=  

(5.3) 

Suppose IA l, IBI ~< Bo, x <~Xm when-rd2  ~< 13 ~< 0. Then 

I~/Alsin0d01~<l - -2 2 ~'~oP x sin 213 
IotBJ 

(5.4) 
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Taking account of relations (5.1)-(5.4), we obtain from (1.4) that 

r = gj + O(x ½,13 2, t °) 
(5.5) 

S = C o + C t ,  Co =2gl +sinl3eosl~g[, C I =O(xN,132,t °) 

In the interval [-rd2,0] Co > 0, we have that ~ ---) 0 as Co = 0([32). Hence, IG/Col < ~ and we can 
write 

S = Co(1 + O(x~,~°,t°)) 
It follows from relations (5.2) and (5.6) that 

~_,;ctge=9~t-'x-~G,2g;2+O(x~,p,t°), G,,,. = 

(5.6) 

sin" ~(cos ~)% 
28, + sin 13 cos l~g~ 

Estimating the other terms on the right-hand sides of expressions (1.2) in a similar manner, we shall 
have 

xT =l {9~-lx-~[Gi2g~2 (cos~)~g~]+O(x~,~,to)} (5.7) 

xo = ±,f2 s i .  g; + o(,,°, 
r L 2  J 

Taking account of relations (3.2) and the equalities 

xp = xf.,p + xeO O, x,, = x.~,, + xeO,, 

we find from (5.7) that 

xp = l { 3~t-'x~G2,g~2 + O(x,~32,t-~)} 
(5.8) 

x,~ = l {3B-'x-~Oo,g, gf + O(x°,[3,t°)} 

In accordance wi th (5.5), r 2 = 2g I + O(~.2/3,f32,t°). Since gl > 0 when 13 ~ [-~/2, O] and gl = 0(132) as 
[3 ---) O, then 

r -I = (2g | ) -~( I  + O(x~,l]°,t°)) 

According to relations (5.7) - (5.9) 

3~/2 x - ~  sin ~(cos I~) ~ g~g~ + O(x ° , I~, t °) 
x° = 4 

x. = ~ L  ~t-',~-~;Go~gfg~ + O(x°,13°,t °) 

xp = ~-~-',~Y~G~s;~ g~ ~ O(x,~,t -~) + 

(5.9) 

(5.10) 

Since x = -p.0 when I~ = -n/2, then, when account is taken of (3.7), from the first two equalities of 
(5.10) we simult~neously obtain 

xelBc = - ~ 1  x-~4p101-~4 +D, I DI<** (5.11) 

It follows from (5.11) that, when Mc = 1, the projection of an arc of the free surface bc on the x axis 
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is a finite quantity (c is the point at which the curvilinear segment of the arc of the free surface joins 
the linear segment). 

We now consider the expression 

-0j I~l 0 
J = + J2 + J3; = I x0d0, J2 = I x ap, J3 = I 

- 0  0 -1¢12 x I 

0rE(0,00), x I=BI01I ,  ~lE[--n/2,  0] 

The integral J1 is calculated when 13 = - ~ 2  (along BC) , . I2  is calculated when × = x 1 and J3 is calculated 
when 13 = 131. It is obvious that J is the projection on the x axis of an arc which joins the edge of the 
nozzle b to the point on the streamline ~ = g1(131) at which evening-out of the velocity occurs (at which 

1 
M becomes unity and 0 vanishes). It follows from relations (5.10) that J2, J3 = O(~i/3) when ~1 --> 0. 

Letting ×1 tend to zero, we can show that J is independent of 131 and, consequently, the values M = 1, 
and 0 = 0 are attained at one and the same value o fx  for all the streamlines in the jet. Beyond this 
equalization plane, the ga s velocity is equal to the velocity of sound and the jet has the shape of a cylinder. 

Hence, the assertion formulated at the beginning of this section is proved. Note that, in constructing 
the functions ~1 and ~2, we have only used conditions in the free surface (13 = -7r/2) and on the x axis 
(13 = 0). Hence, assuming that a solution of the problem exists for an axially symmetric nozzle of arbitrary 
shape, the result also holds for an arbitrary analytic dependence of the Mach number on the reduced 
velocity. 

A similar result for a plane symmetric jet of a perfect gas, flowing from a vessel with straight walls, was obtained 
for the first time in [5]. Extension to the case of a plane jet of gas flowing from a vessel of arbitrary shape in the 
case of an arbitrary relation between the density and pressure can be found in [6]. 

Using the expression ¥1 = fl(t0) which has been found above, it can be shown that, when Mc < 1, evening-out 
of the velocity in the jet occurs at a finite distance from the nozzle edge. 

The problem of the axial by symmetric emission of a gas jet from a nozzle with a curvilinear wall has been 
investigated using the methods of functional analysis in [7-10]. The nozzle shape was specified by the equation r 
= f (x)  (--~, < x ~< 0). Subject to certain constraints on the gas dynamic functions and the conditions 

fix) E C4,f"(x) ~< 0, I arctgf(x) I < n/'2 

f(x) -- const when I x I > g (X = const > 0) 

the solvability of the problem was proved and it was established that equalization of the velocity in the jet with 
a critical pressure on the free boundary occurs at a finite distance from the nozzle edge (the shape of the surface 
on which equalization occurs was not investigated). 

We put 

6. T H E  C A L C U L A T I O N  S C H E M E  

¥o [(tp_l)cos _g0+l]sin a~'~ l-cose nx ---- ~ - I "  - -  COS 2 

L 2% J 2 1 - c o s  0 o 2 

¢p=ft(co) when Mc<l (6.1) 

(p = gl([~)+X~((pl(~)+/5(p2(~))exp(--O~102), a I =I0  when M c = 1 

The function W0, constructed in this manner, satisfies boundary conditions (1.3) and retains the same 
leading parts of  the asymptotic expansions of the function W which have been found when Mc < 1 and 
Mc=l. 

The function Z = ¥ - ¥0 must serve as a solution of the boundary-value problem 

L(z)=N(¥°+z)-L(¥°), Z--0 on AAIBC 

(see (2.5)). The determination of the function Z reduces to solving an iterative sequence of linear 
difference boundary-value problems, and the (n + 1)-th approximation of the required function Z(.+I) 
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is found using the scheme 

Zt"+l)=(1-w)ztn)+w~ tn+~), 0 < w ~ l ,  n=0 ,1  .... 

where the difference solution of the problem for the equation 

L(Z)  = N ( V  ° + Z t"~) - L ( ~  ° ) .  

is taken for Z (n+vz) 
A finite difference scheme with a five-point approximation on a uniform rectangular mesh is used 

in the domain 2~. The method of successive upper relaxation is used for its implementation. The transition 
into the physical plane is made using formulae (1.2) with a spline approximation of the mesh values 
of V. 

During the course of the iterative process, a domain usually arises in the nei~,t~bourhood of the segment 
AA1 where the values of the quantities ~(") = ~0 + Z(n), IA~) = y(~l(n)), S(n) = 2y(~) + ¥(0,)sin 0 are 
negative, but these values subsequently become smaller in magnitude and vanish. The following tech- 
nique is used in order that the expression N(~ (")) should not become infinite and that the iterative process 
should not diverge. When S (") = --m (") < 0 S ("), S (") + 4m(")f(x,0) is replaced byf(x,0), where (%0) ---> 
(1,0) is a smooth positive function which vanishes when exp(-al02) and rapidly tends to 1 on moving 
away from point C. The introduction of the factor in expression (6.1) serves similar surfaces. 

7. R E S U L T S  OF THE C A L C U L A T I O N S  

Calculations were carried out on the emission of a jet of perfect gas with an adiabatic exponent y = 
1.4 for the series of values 00 ~ [7,5*; 180"] and Mc ~ [0; 1]. A Mc < 1 mesh was used when I X J = 
200 X 100 and a Mc = 1 mesh when I × J = 100 X 200 (I and J are the number of steps along the x 
and 0 axes). Note that u~ = -(1 + / ) ,  8 = -u2kt 2 = 9 ( 2 / -  1)/8 in the case of a perfect gas. 

Suppose rb, rc are the values of r at point b and c and that k~ = ~ / ~  is the jet contraction factor. The 
values of kc found are shown in Table 1. The last row in this table contains the exact values of ka, 
determined for 00 = 180" using a momentum theorem [3]. 

ka = ( y M  2 ) - I t  t1 + (7 - 1)Me 2 / 21 ~ ' - u  - 11 (7.1) 

The condition aab is satisfied with a sufficiently high accuracy for all versus of the calculation on 
(r - rb) cos 00 = -x sin 00. It would be expected that the error in determining 00 would become smaller 
as 00 decreases. 

Suppose kp is the jet contraction factor in plane flow, similar to that considered above. A table of 
values of k., calculated with. a high accuracy, has been presented in [11]. Comparison shows that 
kp / ka > 1 (or all 00 ~ 0, 180" (when 00 + 180 °, kp, like ka, is determined using formula (7.1)). The ratio 
kp / ka reaches maximum values in the neighbourhood of 00 = 60 ° and, when 00 = 60 ° kp / ka = 1.0351 
for Mc = 0 and k~/ka = 1.0257 for Mc = 1. 

The values of x,: / ro when Mc = 1 are presented below for a number of values of 00 (xc is the abscissa 

Table I 

O~ Mc 2 = 0 0.2 0.4 0.6 0.8 I 

0.95857 7.5 
15 
30 
45 
60 
90 

120 
150 
180 
180 

0.93804 
0.88305 
0.79323 
0.72339 
0,66864 
0.59146 
0.54375 
0.51539 
0.50015 
0.5 

0.94379 
0.89375 
0.81007 
0.74385 
0.69124 
0.61608 
0.56903 
O.54084 
0.52563 
0.52550 

0.95063 
0.90541 
0.82809 
0.76551 
0.71503 
0.64181 
0.59537 
0.56732 
0.55211 
0.55202 

0.91823 
0.8474 ! 
0.78846 
0.74004 
0.66868 
0.62278 
0.59482 
0.57959 
0.57957 

0.96761 
0.93250 
0.86819 
0.81276 
0.76632 
0.69667 
0.65123 
0.62333 
0.60806 
0.60816 

0.97753 
0.94862 
0.89067 
0.83863 
0.79409 
0.72608 
0.68104 
0.65315 
0.63780 
0.63781 
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Fig. 3. 

of the point c). 

O~ 7.5 15 22.5 30 45 60 75 

x c I rl, 0.6235 0.7447 0.8124 0.8547 0.9004 0.9188 0.9233 
O~ 90 105 120 135 150 165 180 

Xc / rh 0.9204 0.9136 0.9050 0.8959 0.8870 0.8790 0.8720 

The maximum ofxc / rb  is in the neighbourhood of 00 = 75 °. When Mc = 1, the shape of the arc bc 
is shown for 00 = 15 °, 30 °, 60 °, 90 °, 180 ° in Fig. 3 (re decreases as 00 increases). 

Suppose s is the arc abscissa of the curve bc. It follows from (1.2) and (1.4) that on bc. 

r= '+i  V,lac sinOaO , r 2 = 2  
rc o 

I ds=qT~,u" u=Tv,l.c I+ V,l,c Sin adO (7.2) 
rhdO 

o e 
x---=.~a J UcosOdO, r = l + x / ~ "  . J UsinOdO 
rb - %  rb - %  

The values of U obtained by solving the problem at mesh points in the interval B C  when M~ = 1 can 
be approximated as follows: 

U = U o at  sin latt + l + O / O o , 

1 1 ~pg I oI -~, 

e e l - c o , o ]  

t = l e / e o  I °'54 

(7.3) 

Table 2 

Oo0 a I X I05 a 2 X IO s a3 × IO s a4 X I05 a 5 X 105 a 6 x 105 

7.5 

15 

30 

45 
60 

90 

120 
150 

180 

-7862 
- !  2429 
-19049 
-24039 
-28099 
-34509 
-39475 
-43513 
-46919 

-1877 
-2049 
-2404 
-2767 
-3133 
-3861 
-4568 
-5239 
-5861 

309 
158 
4 8  

-502 
4 7 6  

-12~  
-1583 
- 1 9 ~  

-307 
-304 
-31 I 
-332 
-358 
--422 
-496 
-577 
--662 

121 

102 

72 

42 

14 
--41 

-99 

-160 
-225 

-!16 
-98 
-77 
-68 
--61 
-56 
-59 
-67 
-77 
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Using formulae (7.2) and (7.3) alad Table 2, which contains the coefficients ak for a number of values 
of 00, it is possible to establish the shape of the arc bc when Me = 1. Here, the maximum error in 
determining x c / r  b and rc/rb for the tabulated values of 00 does not exceed 0.04% and 0.003% 
respectively. The use of the coefficients ak given in Table 2, obtained for intermediate values of 00 using 
the spline approximation, barely increases this error. The arc albc found by the method described can 
serve as the general:rix of the subsonic part of an axially symmetric Laval nozzle with a plane transition 
surface. 
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